- (4) A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 56, 1776-1777 (1972).
- T. Terao, unpublished work.
- S. J. Kohler and M. P. Klein, *Biochemistry*, **15**, 967–973 (1976).
 S. T. Rao and M. Sundaralingam, *J. Am. Chem. Soc.*, **9**1, 1210–1217
- (1969)
- J. Kraut and L. H. Jensen, Acta Crystallogr., 16, 79-88 (1963). (9) S. Neidle, W. Kuhlbrandt, and A. Achari, Acta Crystallogr., Sect. B, 32,
- 1850-1855 (1976). (10) D. G. Gorenstein and D. Kar, Biochem. Biophys. Res. Commun., 65,
- 1073-1080 (1975). (11) D. G. Gorenstein, D. Kar, B. A. Luxon, and R. K. Momii, J. Am. Chem. Soc., 98, 1668-1673 (1976).
- (12) D. G. Gorenstein, J. B. Findlay, R. K. Momili, B. A. Luxon, and D. Kar, *Bio-chemistry*, **15**, 3796–3803 (1976).
- (13) A. Yamada and K. Akasaka, unpublished work
- (14) K. Akasaka, A. Yamada, and H. Hatano, FEBS Lett., 53, 339-341 (1975).
- (15) T. Glonek and A. Chan, *Biochemistry*, 15, 3869–3875 (1976).
 (16) R. G. Griffin, *J. Am. Chem. Soc.*, 98, 851–853 (1976).
 (17) S. J. Kohler and M. P. Klein, *Biochemistry*, 16, 519–526 (1977).

Takehiko Terao,* Shigeru Matsui, Kazuyuki Akasaka

Department of Chemistry, Faculty of Science Kyoto University, Kyoto 606, Japan Received May 10, 1977

Prolongation of the Lifetime of the ²E State of Tris(2,2'-bipyridine)chromium(III) Ion by Anions in Aqueous Solution¹

Sir:

Compared to the emission lifetimes of ²E states of other octahedral N-bonded Cr(III) complexes in aqueous solution $(\tau < 2 \,\mu s)$,^{2,3} the ²E state⁴ of Cr(bpy)₃³⁺ is remarkably longlived ($\tau = 63 \ \mu s$ at 22 °C in N₂-purged solutions).⁵ The $Cr(bpy)_3^{3+2}E$ state is readily quenched by O₂ and by a wide variety of electron-transfer agents (including N_3^- and I^-)⁵⁻⁸ resulting in a diminution in the intensity of the ${}^{2}E \rightarrow {}^{4}A$ phosphorescence bands at 695 and 727 nm and a concomitant decrease in the ²E lifetime. In neutral and basic aqueous solution, Cr(bpy)₃³⁺ is photochemically active, undergoing ligand loss to form $Cr(bpy)_2(OH)_2^+$ and free bpy. The ²E state is formed with a quantum yield of ~ 1 and is believed to be the direct precursor of the photoaquation intermediates.9

We have been examining the effect of changing the solution medium (solvent, salts) on the ²E state of $Cr(bpy)_3^{3+}$ by monitoring the excited-state absorption spectrum (flash photolysis), lifetime (decay of the ²E absorption), and phosphorescence spectrum (spectrofluorimetry). Substitution of D_2O for H_2O effects no change in the ²E lifetime. Similarly, in nonaqueous solvents (CH₃OH, CH₃CN, DMF, ethylene glycol), the profiles of excited-state emission, excitation, and absorption spectra, as well as the excited-state lifetime, remain unchanged. However, in aqueous solution in the presence of high salt concentrations (>1 M), the lifetime is *increased* while all the other excited-state parameters remain unchanged. This general effect has been observed for NaCl, NaClO₄, NaHSO₄, and KNO₃; the same effect is observed when HClO₄ is used in place of NaClO₄. We have examined this phenomenon in detail for ClO_4^- in order to establish the effect of anion on the radiative, nonradiative, and reactive (photochemical) pathways.

In dilute aqueous solution, the quantum yield of phosphorescence is very small $(\Phi_{\rm rad} < 10^{-3})^5$ indicating that $k_{\rm rad}$, the radiative rate constant, is small compared to the sum of the nonradiative and reactive rate constants, $k_{nr} + k_{rx}$. In concentrated ClO_4^- solutions, k_{rad} is still negligible.¹⁰ The effect of ClO₄⁻ on Φ_{rx} , k_{rx} , k_{nr} , and τ is shown in Table I. Perchlorate ion decreases both the nonradiative and reactive rate constants but has a greater effect on the latter. This is in marked contrast to the behavior of the ²E state of $Cr(en)_3^{3+}$ which is unaf-

Table I. Effect of NaClO₄ on ²E State of Cr(bpy)₃³⁺

	No added salt	5 M NaClO ₄
$\frac{\Phi_{\rm rx}{}^a}{\tau_{\rm air}{}^b}$ $k_{\rm rx}{}^c$	$0.164.8 \times 10^{-5} s3.4 \times 10^{3} s^{-1}$	$ \begin{array}{c} 0.009 \\ 7.1 \times 10^{-5} \text{ s} \\ 1.2 \times 10^{2} \text{ s}^{-1} \end{array} $
$\tau_0^d k_{nr}^e$	$6.3 \times 10^{-5} \text{ s}$ $1.3 \times 10^4 \text{ s}^{-1}$	$2.9 \times 10^{-4} \text{ s}$ $0.3 \times 10^{4} \text{ s}^{-1}$

^{*a*} Quantum yield of photochemical reaction ($\lambda = 313$ nm) at 22 °C measured in air-saturated solution at pH 9.6 relative to Φ_{rx} of 0.11 under the same conditions at 11 °C.9 b Lifetime of ²E state for conditions, given above, under which ϕ_{rx} is determined. ^c Rate constant for the reactive pathway $k_{rx} = \Phi_{rx} \tau_{air}^{-1}$, estimated uncertainty ±25%. ^d Lifetime in N₂-purged solution at 22 °C; $\tau_0^{-1} = k_{nr} + k_{rx} + k_{rad}$. ^e Rate constant for nonradiative pathway calculated from $k_{nr} = \tau_0^{-1}$ $-k_{\rm rx}$, estimated uncertainty $\pm 30\%$.

fected¹² by the presence of 5.2 M MgCl₂ in aqueous solution at 25 °C.

The photochemical reaction of $Cr(bpy)_3^{3+}$ is believed to proceed through a seven-coordinate intermediate formed by the addition of a water molecule to the Cr(III) metal center.⁹ By analogy to $Fe(phen)_3^{2+}$, $Cu(phen)_3^{2+}$, ¹³ and closely related Cr(II) complexes,¹⁴ pockets undoubtedly exist between the bpy ligands large enough to accommodate small molecules such as H_2O ; in the presence of 5 M ClO₄⁻, where ion pairing would be extensive,¹⁵ some of the interligand and solvation sphere water molecules would be expected to be replaced by ClO_4^- . In addition, in concentrated salt solutions a considerable amount of bulk solvent is bound up in solvation of the ions,¹⁶ thereby lowering the activity of water and the rate of formation of the photochemical intermediate, k_{rx} .

The lack of a solvent isotope effect on k_{nr} is indicative of the lack of direct vibrational coupling between the metal-centered ²E state of $Cr(bpy)_3^{3+}$ and the solvent; a similar lack of a D_2O isotope effect has been reported¹⁷ for $Cr(CN)_6^{3-}$. However, $k_{\rm nr}$ may be affected by changes in solvent polarity owing to electronic dipole perturbation of the ²E state.¹⁸ Solvent-dependent lifetimes have been reported for other Cr(III) complexes;^{16,17,19} in the case of $Cr(CN)_6^{3-}$, the ²E lifetime has been shown to be a function of solvent polarity.¹⁷ The lack of a solvent effect on the lifetime of the ²E state of $Cr(bpy)_{3}^{3+}$ indicates that changes in solvent polarity do not cause sufficient perturbation to alter k_{nr} (within experimental uncertainty). In addition, the ²E and ⁴T states in $Cr(bpy)_3^{3+}$ are effectively isolated.9 As a result, despite the Laporte and spin forbiddenness of the ${}^{2}E \rightarrow {}^{4}A$ transition in all Cr(III) complexes, the ²E states of other Cr(III) complexes are substantially shorter lived than the ²E state of $Cr(bpy)_3^{3+}$

Nonradiative decay of the ²E state of $Cr(bpy)_3^{3+}$ occurs by transformation of electronic energy into vibrational energy; the ligand may act as both the perturbation (an oscillating dipole) and as the energy acceptor.¹⁸ The anion effect on k_{nr} can be seen as arising from extensive ion pairing and placement of anions in interligand pockets, thereby decreasing both vibrational freedom of the ligands and the efficiency of energy transfer. This model suggests that increasing the rigidity of the bpy ligands should cause a decrease in the rate of energy transfer and a corresponding increase in the ²E state lifetime. Such an increase in rigidity, accomplished by substituting phen for bpy, is reflected in the low energy metal-nitrogen vibrational modes which are at a higher frequency for tris(phen) complexes than for tris(bpy) complexes.²⁰ Thus, the ²E state of $Cr(phen)_3^{3+21}$ is expected to be longer lived than the corresponding state of $Cr(bpy)_3^{3+}$. Furthermore, the effect of anions on the ²E state lifetime should be less pronounced for $Cr(phen)_3^{3+}$ than for $Cr(bpy)_3^{3+}$ because the more rigid phen ligands would be less susceptable to perturbation by the interligand anions.

Both these predictions have been borne out experimentally. We find that the lifetime (τ_0) of the ²E state of Cr(phen)₃^{3+ 22} in N₂-purged dilute aqueous solution at 22 °C is 0.36 ms (compared to 0.063 ms for $Cr(bpy)_3^{3+}$). The anion effect on $Cr(phen)_3^{3+}$ and $Cr(bpy)_3^{3+}$ is seen by comparing these lifetimes with those in concentrated (11.7 M) HClO₄: $\tau_0 = 0.53$ and 0.67 ms for $Cr(bpy)_3^{3+}$ and $Cr(phen)_3^{3+}$, respectively. Thus, the maximum effect we have seen is almost a factor of 10 for $Cr(bpy)_3^{3+}$ but only a factor of 2 for $Cr(phen)_3^{3+}$.

Acknowledgments. The author acknowledges the discovery of this ClO₄⁻ effect by Professor V. Balzani and his co-workers and thanks them for their continued association and interaction with this project. She also thanks Professor R. H. Clarke for helpful discussions and Professor M. Z. Hoffman for his support.

References and Notes

- (1) Research supported by the National Science Foundation (Grant No. CHE 76-21050) and the North Atlantic Treaty Organization (Grant No. 658). A. W. Adamson, A. R. Gutierrez, R. E. Wright, and R. T. Walters, Twelfth
- Informal Conference on Photochemistry, National Bureau of Standards,
- Gaithersburg, Md., June 1976, Paper G1. The emission lifetime of the ²E state of *t*-Cr(en)₂(NCS)₂⁺ has been recently found to be ~10 μ s (D. Sandrini, M. T. Gandolfi, L. Moggi, and V. Balzani, (3) submitted for publication).
- The lowest excited state of Cr(bpy)₃³⁺, ²E, is in thermal equilibrium with (4) the ²T₁ state; these two doublet states will be designated ²E for simplici-
- (5) M. Maestri, F. Bolletta, L. Moggi, V. Balzani, M. S. Henry, and M. Z. Hoffman, J. Chem. Soc., Chem. Commun., in press.
- (6) F. Bolletta, M. Maestri, L. Moggi, and V. Balzani, J. Chem. Soc., Chem. Commun., 901 (1975).
- R. Ballardini, G. Varani, F. Scandola, and V. Balzani, J. Am. Chem. Soc., (7)98, 7432 (1976).
- (8) V. Balzani, personal communication of unpublished results.
- M. Maestri, F. Bolletta, L. Moggi, V. Balzani, M. S. Henry, and M. Z. Hoffman, submitted for publication.
- (10) Φ_{rad} increases¹¹ in direct proportion to the increase in the lifetime of the 2E state.8.9 (11) CIO4 has been shown to increase the fluorescence intensity from the S1
- state of 1-hydroxynaphthalene-2-sulfonate (R. M. C. Henson and P. A. H. Wyatt, J. Chem., Soc., Faraday Trans. 2, 71, 669 (1975)).
- (12) H. F. Wasgestian, R. Ballardini, G. Varani, L. Moggi, and V. Balzani, J. Phys. Chem., 77, 2614 (1973)
- (13) F. M. Van Meter and H. M. Neumann, J. Am. Chem. Soc., 98, 1382 (1976).
- (14) G. N. LaMar and G. R. Van Hecke, *Inorg. Chem.*, **12**, 1767 (1973).
 (15) For Fe(phen)₃²⁺ ··· ClO₄⁻, K_{lp} = 5.73.¹³ For Cr(bpy)₃³⁺ ··· ClO₄⁻, K_{lp} would be expected to be even larger for electrostatic reasons.
 (16) G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer, *J. Phys.*
- Chem., 74, 1285 (1970).
- (17) R. Dannohl-Fickler, H. Kelm, and F. Wasgestian, J. Lumin., 10, 103 (1975)
- (18) P. B. Merkel and D. R. Kearns, J. Am. Chem. Soc., 94, 7244 (1972).
- Conti and L. S. Forster, J. Am. Chem. Soc., 99, 613 (1972).
 C. Conti and L. S. Forster, J. Am. Chem. Soc., 99, 613 (1977).
 J. R. Ferraro, "Low-Frequency Vibrations of Inorganic and Coordination Compounds", Plenum Press, New York, N.Y., 1971, pp 198–202.
 N. A. P. Kane-Maguire, J. Conway, and C. H. Langford, J. Chem. Soc., Chem. Commun. 204 (1974).
- Commun., 801 (1974).
- (22) Φ_{rx} for Cr(phen)₃³⁺ in neutral and basic solution⁸ is ~0.01; thus τ_0^{-1} is a very good approximation to knr.

Marian S. Henry

Department of Chemistry, Boston University Boston, Massachusetts 02215 Received March 28, 1977

¹⁹F Nuclear Magnetic Resonance Investigation of the Ternary Complex Formed between Native Thymidylate Synthetase, 5-Fluoro-2'-deoxyuridylate, and 5,10-Methylenetetrahydrofolate

Sir:

The enzyme thymidylate synthetase catalyzes the reductive methylation of 2'-deoxyuridylate (dUMP) to form thymidylate (dTMP) while employing 5,10-methylenetetrahydrofolate (CH_2FH_4) as a coenzyme. The proposed involvement of de novo synthesis of thymidylate as a rate-determining factor in

Figure 1. ¹⁹F NMR spectra of the ternary complex (A), F₂dUMP (B), 11 (C), and III (D) (all spectra were recorded at 20 °C using 18-mm sample tubes in our homemade 18-mm probe:22 spectra B-D were recorded under conditions of full proton decoupling): (A) ternary complex comprising 0.4 mM thymidylate synthetase, 0.8 mM F₂dUMP, and 4 mM CH₂FH₄ in 0.1 M Tris-SO₄, 50 mM MgSO₄, 20 mM β -mercaptoethanol, pH 7.3; (B) 0.010 M F₂dUMP in 0.1 M Tris-SO₄, pH 7.3; (C) 0.005 M II in 0.1 M Tris-SO₄, pH 7.3; (D) 0.005 M 111 in 0.1 M Tris-SO₄, pH 7.3.

DNA synthesis and cell division has resulted in many attempts to elucidate the mechanism of action of thymidylate synthetase. Foremost among these efforts has been the identification and isolation of stable ternary complexes¹⁻⁷ between native thymidylate synthetase, its coenzyme CH₂FH₄, and the inhibitor 5-fluoro-2'-deoxyuridylate (FdUMP). We report here ¹⁹F NMR data that provide direct physical evidence for the structure of this ternary complex formed with native enzyme isolated from amethopterin resistant Lactobacillus casei. The impact of these data with respect to previous studies involving model compounds⁸ and fragments of the complex obtained by proteolytic degradation⁹⁻¹⁰ is also discussed.

Numerous studies have sought to elucidate the structural features in the ternary complex, with particular emphasis on the coordination of FdUMP and CH₂FH₄ to the enzyme. Danenberg et al.9 and Pogolotti et al.10 have reported procedures for the enzymatic degradation of the ternary complex to yield a small peptide fragment to which both FdUMP and CH₂FH₄ moieties remain bound, and Bellisario et al.¹¹ have presented evidence which suggests that the FdUMP is linked to a cysteinyl residue in a related peptide. These studies were based on radiolabeling techniques; hence there is no specific bonding information available to account for the association. Spectroscopic techniques,¹²⁻¹⁵ used in attempts to determine the molecular nature of the binding of these moieties, provided inferences of the structural features. Danenberg and Heidelberger¹⁶ have reported evidence based on chemical degradation which indicates that the point of covalent attachment for FdUMP to thymidylate synthetase occurs through nucleophilic attack of a cysteine sulfhydryl group on the pyrimidine ring. It is now generally accepted that the catalytic mechanism is initiated by attack of an active site nucleophile, most likely a cysteinyl sulfhydryl group, on carbon 6 of the pyrimidine ring to generate a carbanion which subsequently attacks CH_2FH_4